
Vol.:(0123456789)1 3

Journal of Forestry Research           (2024) 35:52  
https://doi.org/10.1007/s11676-024-01705-x

ORIGINAL PAPER

Effects of tree size and organ age on variations in carbon, 
nitrogen, and phosphorus stoichiometry in Pinus koraiensis

Yanjun Wang1,2,3 · Guangze Jin1,2,3 · Zhili Liu1,2,3 

Received: 16 September 2023 / Accepted: 17 October 2023 
© The Author(s) 2024

age, or root order rather than soil factors. At a whole-plant 
level, nutrient traits decreased in needles and fine roots but 
increased in branches with tree size. At the organ level, age 
or root order had a negative effect on C, N, and P and a posi-
tive effect on stoichiometric ratios. Our results demonstrate 
that nutrient variations are closely related to organ-specific 
functions and ecophysiological processes at an individual 
level. It is suggested that the nutrient acquisition strategy by 
younger trees and organ fractions with higher nutrient con-
tent is for survival. Conversely, nutrient storage strategy in 
older trees and organ fractions are mainly for steady growth. 
Our results clarified the nutrient utilization strategies during 
tree and organ ontogeny and suggest that tree size and organ 
age or root order should be simultaneously considered to 
understand the complexities of nutrient variations.

Keywords Tree size · Organ age (or root order) · Carbon 
(C) · Nitrogen (N) · Phosphorus (P) · Pinus koraiensis

Introduction

Carbon (C), nitrogen (N), and phosphorus (P) are crucial 
elements that play significant roles at individual to com-
munity levels in plant growth, biochemical functioning, and 
various ecophysiological processes, including photosyn-
thesis, energy flow, and nutrient cycling (Sterner and Elser 
2002; Wright et al. 2004). The ratios of C:N, C:P and N:P 
are indicators of plant nutrient use efficiency, and relative 
nutrient limitations in terrestrial ecosystems are frequently 
used as input parameters in some ecological models (Ågren 
2004; Zhang et al. 2019). Therefore, the study of nutrient 
traits (i.e., C, N, P, C:N, C:P and N:P ratios) can aid in 
the development of a more mechanistic understanding of 
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nutrient utilization, plant ontogenetic strategies, and ecosys-
tem structure and function (Ågren 2008; Tang et al. 2018).

As ontogeny (i.e., whole-tree development) progresses, 
large trees due to their height advantage are able to capture 
most of the light resources in forests, resulting in significant 
light limitations for smaller understory trees (Martínez-
Vilalta et al. 2007). This likely implies a considerable role of 
tree size for nutrient utilization strategies. Previous studies 
have confirmed that size is a significant regulator of nutri-
tional traits, but only based on leaf nutrient studies, such as 
in evergreen (He and Yan 2018) and deciduous species (Sen-
dall and Reich 2013), where leaf N content increased with 
tree size. No directional shift has been reported between leaf 
P contents and height at an individual level (He and Yan 
2018). Leaf C, N and C:N ratios varied significantly with 
diameter at breast height (DBH) in two dominant rainforest 
tree species (Martin and Thomas 2013). Apparently, tree 
size modulates the underlying strategies for nutrient utiliza-
tion (Anderson-Teixeira et al. 2016; Kuusk et al. 2018a), but 
there was no consistent pattern for the effect of tree size. In 
addition, the roles of different organs were not considered 
in the studies mentioned. There was no rounded system of 
nutrient variation at the whole-plant level, and our study 
aims to fill this information gap.

To date, several studies have shown that plant nutrients 
are allocated to satisfy the demands of specific organ func-
tions (Minden and Kleyer 2014; He et al. 2015; Xiong et al. 
2021). For instance, leaves are photosynthetic organs and 
play a key role in capturing light and fixing C (Wright et al. 
2004). Branches provide mechanical support, hydraulic 
pathways for transporting resources (Fortunel et al. 2014). 
Roots are underground organs used to absorb nutrients 
and water from the environment (McCormack et al. 2015). 
Therefore, studies at the individual level, which include the 
major plant organs rather than for a single organ, can pro-
vide a better foundation for understanding nutrient allocation 
strategies and the cooperative mechanism between organs.

More importantly, organ age (needles, branches and 
fine roots) has been neglected in these studies, despite a 
potential functional divergence within organs on nutrient 
variations (Ågren 2008; Kuusk et al. 2018a). Surprisingly, a 
comprehensive consideration of nutrient variation among the 
major organs of 49 tree species by Li et al. (2010) found that 
nutrient traits significantly decreased with increasing twig 
and root order across all species. Thus, additional studies 
are needed to determine nutrient variations within organs 
at an individual level, and to examine underlying allocation 
strategies. Ecologists, according to specific physiological 
functions and nutrient utilization strategies of roots, divide 
fine roots into two broad groups: absorptive roots (mainly 
1st–3rd) and transport roots (mainly 4th and 5th) (Pregitzer 
2002; McCormack et al. 2015). Whether nutrient-related 
functional divergence exists in needles and branches within 

organ age classes is not clear, suggesting that it is neces-
sary to consider nutrient variation patterns across organ ages 
and root orders. This research will aid understanding of the 
inherent trade-off mechanisms of nutrients within organs.

Nutrient traits in different plant organs significantly vary 
with environmental factors, especially for soil directly in 
contact with root systems (Li et al. 2018). Zhao et al. (2016) 
explored nutrient variations in major plant organs across sev-
eral Chinese forest ecosystems and found that soil N and P 
contents have a significant influence on these nutrients in 
leaves and fine roots. However, Liu et al. (2013) indicated 
that soil nutrient levels were not the main driver for leaf N 
and P content in a shrub biome transect. However, these 
studies were conducted at regional scales; it is necessary 
to determine whether soil nutrient content affects nutrient 
variations for a given tree species at a local scale.

Pinus koraiensis Siebold & Zucc. is the most important 
component in mixed broadleaved-Korean pine forests of 
northeastern China. Determining nutrient differences in nee-
dle, branch and fine root throughout tree development, organ 
age and root order is a crucial pathway for understanding 
plant nutrient use strategies. In this study, nutrient traits were 
measured in needles, branches and fine roots with different 
organ ages or root orders of variable sized P. koraiensis. Soil 
properties were also determined to relate the importance of 
tree size, organ age and root order on nutrient traits. Specifi-
cally, the questions were: (1) Are tree size, organ age or root 
order the main drivers of plant nutrient traits rather than soil 
factors? (2) At a whole plant level, are the variations in plant 
nutrients tightly related to organ-specific functions? and (3) 
Is there a common nutrient strategy throughout the tree and 
organ development process?

Materials and methods

Field work was carried out in a 9-ha old-growth (about 
300 years old) mixed broadleaved-Korean pine forest per-
manent dynamic monitoring plot in Liangshui National 
Nature Reserve (47°10′50″ N, 128°53′20″ E), Heilongjiang 
Province, northeastern China. This area has a typical tem-
perate climate, with mean annual temperature and precipi-
tation of 0.3 °C and 676 mm, respectively. More than 60% 
precipitation falls between May and August, and the area is 
snow-covered from December to April (Liu et al. 2019). P. 
koraiensis is the principal tree species with average DBH 
30 cm. The main companion tree species are Acer pictum 
subsp. Mono (Maxim.) H. Ohashi, Betula costata, and Acer 
ukurunduense.

To methodically unveil the importance of tree size, organ 
age or root order, and soil factors on plant nutrient varia-
tions, 64 healthy P. koraiensis individuals of various sizes 
(0.3–100 cm DBH; Table 1) were selected. Two sample 
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seedlings DBH < 1.0 cm (Vernier calipers were used to 
measure the DBH with an accuracy of 0.01 mm), 30 sample 
trees 1.0 ≤ DBH ≤ 30 cm, (the most similar sized trees had 
a DBH variation of about 1 cm), and 32 sample trees 30 
< DBH ≤ 100 cm (the most similar sized trees had a DBH 
variation of about 2 cm) were selected (Liu et al. 2020).

Sampling was carried out in mid-October 2018, until 
growth of new needles and branches finished. An upper 
south side branch of the one-third canopy, which carried 
all needle age classes was randomly selected and removed. 
Needle and branch age classes were determined by the exist-
ence of polycyclic shoots, and the degree of darkness and 
hardness of needles and branches (Eimil-Fraga et al. 2015). 
Needles and branches from the current year were designated 
as being 0-year old, those from the previous year were 1-year 
old, and so on. Needles and branches were collected, based 
on their age, packaged, and transported to the laboratory.

For sampling fine roots, soil and other impurities sur-
rounding the root system were removed, and an area near 
each tree base was excavated to expose main lateral roots. 
To confirm the specific tree, root branches were traced back 
to the trunk, and then removed from the main lateral roots, 
packaged and transported to the laboratory. Subsequently, 
deionized water was used to wash away residual soil and 
tweezers used to pick out any impurities. Fine roots < 2 mm 
in diameter were categorized using the classification of Pre-
gitzer (2002). First order roots were identified as the most 
distal roots, second order roots from the intersection of two 
first order roots, up to fourth order roots. Roots of the same 
order were packaged together for chemical analysis.

Three soil subsamples were collected from the base of 
each tree with an angle of 120° between any two sampling 
directions. Soil collection was at the base of each tree, and 
ranged from 0 to 10 cm using a 5 cm diameter soil corer 
(Yang et  al. 2019). The three subsamples were mixed 
together, impurities removed (Pregitzer 2002), sealed and 
taken to the laboratory for air drying.

Needles, branches, fine roots, and air-dried soil were oven 
dried at 65 °C until reaching a consistent mass (precision 
of 0.0001 g) prior to chemical analysis. The samples were 
crushed and passed through a 0.149 mm mesh and placed 
in envelopes.

C contents in plants and soil were measured by a Multi 
CN/3000 analyzer (Analytic Jena AG, Germany). N and P 
contents were determined by an AQ400 automatic discontin-
uous chemical analyzer (SEAL Analytical, Mequon, USA) 
after concentrated  H2SO4 digestion. The determination of 
soil water content (g  g−1) was conducted using a drying oven 
(Wang et al. 2016). C, N and P levels were quantified in 
mg  g−1, and stoichiometric ratios determined based on mass.

A one-way ANOVA was conducted, with Duncan’s post 
hoc multiple comparisons (p < 0.05), to contrast variations in 
nutrient traits across different organs. The mean ± standard 
error (SE) presents the results. Differences in nutrient traits 
among organs was evaluated by the coefficients of varia-
tion (CV). The higher stability was expressed as lower CV 
values, and vice versa.

Generalized linear models (GLMs) quantified the rela-
tive importance of tree size (DBH or height), organ age or 
root order, and soil factors for nutrient traits among organs. 
In order to confirm the best descriptive parameter for size, 
the lower Akaike information criterion (AIC) values of the 
linear regressions between DBH or height against each nutri-
ent trait were selected (Table S1). Burnham and Anderson 
(2004) demonstrated that, when the differences of AIC val-
ues of both models were smaller than 2.0, indicates models 
with comparatively equal degree of support and are indis-
tinguishable from one another. These principles guided the 
selection of the descriptive parameter of size for each organ. 
To avoid losing precision when estimating regression coef-
ficients, the variance inflation factor (VIF) was calculated 
for each pair of bivariate independent variables to assess the 
degree of collinearity among the parameters. The variance 
inflation factors (VIFs) for the independent variables (Tables 
S2, S3, and S4) were less than 10. This suggests that there 
was no significant multicollinearity among the independent 
variables, allowing us to retain all of them for further analy-
sis (Chatterjee and Price 1991).

The scatterplots show the relationship in nutrient traits 
against tree size, organ age or root order among different 
organs by a standardized major axis (SMA) estimation 
method (Warton et al. 2006). A likelihood ratio test was 
employed to assess the variability of the regression slope 
(Warton and Weber 2002). If there was no significant differ-
ence between slopes, a common slope was employed.

In order to avoid the influence of DBH or height on 
organ age or root order, the 64 P. koraiensis trees were 
divided into three DBH groups: group I (0–10 cm), group 
II (11–50 cm), and group III (51–100 cm). Similarly, they 
were also divided into three height groups: group I (0–10 m), 

Table 1  Statistical information for diameter at breast height (DBH), 
tree height and soil factors

SD Standard deviation, CV Coefficient of variation

Factor Minimum Maximum Mean (SD) CV (%)

DBH (cm) 0.3 100 41.4 (30.7) 74.1
Height (m) 0.5 32.9 18.7 (9.2) 49.1
Soil water content 

(g  g−1)
0.3 1.3 0.7 (0.2) 37.6

Soil C content (mg 
 g−1)

42.8 270.8 119.2 (52.0) 43.6

Soil N content (mg 
 g−1)

3.2 13 6.9 (2.3) 33.8

Soil P content (mg 
 g−1)

0.3 1.8 0.9 (0.4) 42.3
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group II (11–20 m), and group III (> 20 m) (Liu et al. 2020). 
All statistical analysis used R-4.0.3 (R Core Team 2020), 
and the data were  log10-transformed for normalization before 
analysis.

Results

The nutrient traits differed considerably among organs for 
the 64 P. koraiensis trees. C content in branches was mark-
edly higher than in needles or fine roots, and needle N and P 
contents were considerably greater than in branches or fine 
roots (p < 0.05; Table 2). The ratios of C:N and C:P followed 
the same pattern: branch > fine root > needle. N:P ratios were 
not different in needles and branches, but markedly higher 

than in fine roots (p < 0.05; Table 2). Additionally, needles 
had the smallest CV (%) of nutrient traits among organs, and 
C content the smallest among nutrient traits (Table 2). Nutri-
ent traits among organs were principally influenced by size, 
organ ages or root orders and not by soil factors (p < 0.05; 
Table 3). Therefore, soil properties were not considered as 
important factors in this investigation.

Excluding C content and C:N ratios, needle nutri-
ent traits were significantly related to DBH in differ-
ent organ age groups (p < 0.05; Fig. 1; Table S5). With 
increasing DBH, needle N increased in 1-year-old nee-
dles and decreased in 3-year-old needles (p < 0.05; Fig. 1; 
Table S5). DBH had a negative influence on P for most 
needle age groups and a positive influence on C:P and 
N:P ratios. A common slope of 0.002 was used for N:P to 

Table 2  Carbon (C), nitrogen 
(N), and phosphorus (P) content 
and their ratios in needles, 
branches, and fine roots of 
Pinus koraiensis 

Different letters in the same row indicate significant differences between organs (p < 0.05)
SE Standard error; CV Coefficient of variation

Nutrient Needle Branch Fine root

Mean ± SE CV (%) Mean ± SE CV (%) Mean ± SE CV (%)

C (mg  g−1) 498.5 ± 0.92B 2.9 536.3 ± 1.02A 3.0 476.8 ± 0.94C 3.06
N (mg  g−1) 16.6 ± 0.16A 15.4 9.2 ± 0.23B 37.9 9.0 ± 0.23B 39.4
P (mg  g−1) 2.1 ± 0.03A 18.9 1.2 ± 0.02C 29.4 1.4 ± 0.03B 34.0
C:N 30.9 ± 0.35C 17.9 75.0 ± 3.58A 75.4 61.7 ± 1.59B 39.8
C:P 252.1 ± 3.18C 19.6 518.7 ± 13.29A 39.9 375.7 ± 8.18B 33.7
N:P 8.2 ± 0.09A 16.7 8.6 ± 0.28A 50.5 6.4 ± 0.09B 21.9

Table 3  Influence of size (DBH or height), organ age, root order, and soil factors on needle, branch, and fine root nutrient traits using a GLM

*p < 0.05, **p < 0.01, ***p < 0.001

Organ Nutrient Tree size (DBH 
or tree height)

Organ age (or 
root order)

Soil water content Soil C content Soil N content Soil P content Intercept

Needle C − 0.048 0.003 − 0.097 0.024 0.030 0.083 − 0.008
N 0.074 − 0.622*** 0.038 − 0.201* 0.163* − 0.033 1.512***
P − 0.370*** − 0.567*** − 0.090 0.133 − 0.077 0.172 1.379***
C:N − 0.046 0.617*** − 0.061 0.217** − 0.204** 0.100 − 1.501***
C:P 0.301*** 0.564*** 0.069 − 0.069 0.005 − 0.076 − 1.372***
N:P 0.438*** 0.043 0.132 − 0.298** 0.216* − 0.197* − 0.105

Branch C 0.114 − 0.113* 0.115 − 0.082 0.222* − 0.071 0.275
N 0.492*** − 0.092 0.029 0.032 0.008 − 0.039 0.223
P 0.043 − 0.444*** − 0.048 0.035 0.122 − 0.116 1.081***
C:N − 0.413*** 0.066 0.055 − 0.003 − 0.090 0.119 − 0.162
C:P − 0.116 0.378*** 0.021 − 0.008 − 0.197* 0.229* − 0.920***
N:P 0.2923*** 0.210*** 0.064 0.013 − 0.190 0.162 − 0.511***

Fine root C 0.290*** 0.165** − 0.068 0.220* − 0.206* − 0.049 − 0.397**
N − 0.075* − 0.798*** 0.046 − 0.131* 0.140** 0.051 1.919***
P − 0.191*** − 0.720*** − 0.008 0.053 − 0.023 0.179** 1.732***
C:N 0.051 0.787*** − 0.040 0.148** − 0.163** − 0.052 − 1.894***
C:P 0.197*** 0.725*** − 0.025 − 0.002 − 0.030 − 0.082 − 1.744***
N:P 0.178** − 0.339*** 0.110 − 0.316** 0.232* − 0.089 0.815***



Effects of tree size and organ age on variations in carbon, nitrogen, and phosphorus stoichiometry…

1 3

Page 5 of 11    52 

DBH. In addition, the newest needles were more closely 
related to DBH than other needle age groups (Fig. 1).

For branches, C, N contents and N:P ratios increased 
with height for most branch age groups, and C:N ratios 
decreased significantly. There were no significant trends 
for P and C:P ratios (p < 0.05; Fig. 2; Table S5).

Root nutrient traits were positively correlated with 
height in most individuals (p < 0.05; Fig. 3; Table S5). The 
common slopes of 0.001, − 0.009 and 0.009 were used for 
the relationships of C, P and C:P ratios against height, 
respectively (p < 0.05; Fig. 3; Table S5).

Nutrient traits were significantly correlated with organ 
age or root order and consistent among organs across dif-
ferent size groups (p < 0.05; Figs. 4–6; Table S6). In gen-
eral, all nutrient traits increased with organ age or root 
order except for C. Common slopes of 0.064 were used for 
the relationships of needle C:N ratios and age (p < 0.05; 
Fig. 4; Table S6), common slopes of − 0.128 and 0.128 for 
the relationship of branch P content and age, and branch 
C:P ratios, respectively (p < 0.05; Fig. 5; Table S6); com-
mon slopes of − 0.131, 0.133 and − 0.086 were employed 
for the relationships of P, and C:P and N:P ratios against 
root order, respectively (p < 0.05; Fig. 6; Table S6). The 
effects of organ age or root order for fine root nutrient 

traits were greater than for needles and branches in all size 
groups (p < 0.05; Figs. 4–6; Table S6).

Discussion

In this study, there were significant variations in nutrient 
traits among organs of 64 P. koraiensis trees in northeastern 
China (Table 2). Branches contained the most C content, 
needles the most N and P. Stoichiometric ratios shared a 
general pattern in most samples, branch > fine root > needle 
(Table 2). These findings agree with previous reports at an 
individual level (Zhang et al. 2020), a community level (Yan 
et al. 2016), and even at global scales (Zhang et al. 2018b), 
suggesting organ nutrient variations are strongly regulated 
by organ-specific functions.

Needles are photosynthetic organs with higher N and P 
requirements to produce a range of enzymes necessary for 
photosynthesis and to meet the needs of tree development 
(Sterner and Elser 2002; Zhang et al. 2018a). Branches are 
structural support organs with higher carbon demands to 
construct structural tissues, to support new shoot develop-
ment and for nutrient transport (Xiong et al. 2021). Fine 
roots, as the below-ground analogue of leaves, connect with 
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traits represent 1st-order, 2nd-order, 3rd-order and 4th-order roots, 

respectively. The trend line and regression information are marked in 
the figure as significant. *p < 0.05, **p < 0.01, ***p < 0.001
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soil directly, require sufficient N and P to support compli-
cated physiological metabolic activities and transport the 
additional N and P to needles and branches (Yuan et al. 
2011).

Additionally, Han et al. (2011) suggested that highly 
required nutrients should be shown as low variability (or 
high stability). In this study, C has as relatively lower vari-
ability (CVs) (Table 2), emphasizing that C is the most sta-
ble element which maintains the construction of the basic 
framework within plants. Needles are then the relatively sta-
ble organs with lower variability (CVs) (Table 2). It is likely 
that plants transfer sufficient nutrients from other organs to 
sustain the stability of needle nutrients for photosynthesis 
(Zhao et al. 2016). Our study revealed that nutrient varia-
tions among different plant organs also depends on coop-
eration between organs. It is also a consequence of plant 
evolution (Zhang et al. 2019). Our results contribute to the 
knowledge on nutrient variations and the underlying mecha-
nisms at individual levels compared to using a single plant 
organ.

Previous studies found that soil factors had a negative 
or positive affect on nutrient traits among organs (Zhao 
et al. 2016; Xiong et al. 2021), with some suggesting that 
smaller trees were more sensitive to environmental factors 
at regional to global scales (Liu et al. 2010; Li et al. 2018). 

In this study, nutrient variations among organs were influ-
enced by tree size, organ age or root order, rather than soil 
factors (Table 3). The contrasting results are possibly due 
to the different study scales, i.e., the nutrient traits may be 
more influenced by soil factors at large scales caused by 
the significant variation of soil properties, while nutrient 
traits are more influenced by biological characteristics at the 
individual level, such as tree size, organ age or root order.

Tree size is an important characteristic governing nutrient 
utilization and acquisition at the whole plant level (Ågren 
2008; Martin and Thomas 2013; Li et al. 2018). To date, lit-
tle research has focused on nutrient variations at the whole 
plant level. This study comprehensively considered nutrient 
variation among major plant organs as trees grew and found 
that nutrient traits converged in needles and fine roots and 
tended decrease with size. Nutrient traits in branches tended 
to increase with size (Figs. 1–3).

Higher nutrient levels in needles and roots related to 
higher metabolic activity in smaller trees, reflecting greater 
requirement for protein synthesis to sustain rapid growth 
to reach the upper canopy as quickly as possible. In turn, 
increasing light availability intensifies the demand for nutri-
ents supplied by roots during the sapling-to-mature transi-
tion (Cavaleri et al. 2010; Zhang et al. 2017). An intense 
transport of nutrients between needles and roots is through 
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marked in the figure as significant. *p < 0.05, **p < 0.01, ***p < 
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branches, which represent mechanical support and nutrient 
transport tissues of plants. The increased need for support 
and nutrient transport in branches as a tree grows drives 
greater nutrient requirement (Yan et  al. 2016). In sum-
mary, as a tree grows, organs function as cooperative sys-
tems dominate the nutrient variation among organs and is 
closely related to nutrient allocation and utilization to ensure 
survival.

From the perspective of tree ontogeny processes, small 
trees with higher relative nutrient levels to support intense 
metabolic activity, the process is referred to as the ‘nutrient 
acquisition strategy’. Conversely, as trees mature and volume 
increases, a significant amount of nutrients accumulate, and 
large trees become an internal nutrient pool to better meet 
environmental challenges. This is referred to as the ‘nutri-
ent storage strategy’. The modification of this strategy is a 
progressive process that occurs throughout the life of the 
tree, rather than occurring abruptly.

From the perspective of internal nutrient variation, 
organ age or root order as the biological characteristic driv-
ing nutrient variation has been largely ignored by previous 
research. Organ age or root order generally has a negative 
effect on N and P and a positive effect on their stoichiometric 
ratios among the major organs (Figs. 4–6). These results 
are consistent with those of Li et al. (2010). Younger organ 

fractions are the main site for complex, intense physiological 
activity, which drives the demand for higher N and P and 
enhances N and P utilization efficiency to facilitate rapid 
protein or enzyme synthesis (Li et al. 2010; McCormack 
et al. 2015). These nutrient differences are reflected as larger 
chloroplasts and more mesophyll cells in younger needles 
(Kuusk et al. 2018b); more repetitive production of growth 
units for support structure in younger branches (Kay et al. 
2005; Fortunel et al. 2014); and more cortical cells which 
absorb nutrients and support metabolic activity in lower-
order roots (Pregitzer 2002; McCormack et al. 2015). Even-
tually, all older or higher order organ fractions become more 
structurally robust, owing to the accumulation and increased 
lignification of cell walls and fibrous tissue (Niinemets and 
Lukjanova 2003; Kuusk et al. 2018a). Increasing demand 
for nutrients and water transport efficiency results in the 
thickening and multiplication of conduits in older branches 
(Kay et al. 2005; Fortunel et al. 2014). Xylem proportions 
and diameters increase, leading to expanded transport capac-
ity in higher-order roots (Fortunel et al. 2014). This finding 
confirmed previous studies and there is a distinguishable 
functional divergence within organs: nutrient content is pro-
duced or absorbed in younger organ fractions, and stored or 
transport in older organ fractions (McCormack et al. 2015).
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This is a key pathway to meet nutrient demands resulting 
from the formation of new tissues and is regarded as a mecha-
nism for nutrient conservation and utilization within a species 
for growth and survival. Similar to the widely acknowledged 
absorptive roots and transport roots with different physiologi-
cal functions (McCormack et al. 2015), needles and branches 
of different ages also may be split into different functional 
groups: photosynthetic needles and nutrient transport needles 
and elongated branches and nutrient transport branches. We 
suspect that they are based on secondary growth, which is also 
the most directly indication of nutrient use strategy change and 
amplifies functional divergence (McCormack et al. 2015). The 
findings in this study demonstrate and refine the existence of 
an underlying trade-off strategy between nutrient investment 
in transport and nutrient acquisition within organs that seeks 
to optimize plant growth to adapt to changing environmental 
conditions. Thus, future studies should take sufficient consid-
eration to nutrient variation within organs. In addition, our 
results need to be anatomically confirmed and perhaps refined.

Conclusion

This study extensively considered nutrient traits among 
different organs (i.e., needles, branches, and fine roots) 

of P. koraiensis in a natural forest. Our results indicate 
that nutrient variation in organs are regulated by tree 
size, organ age or root order rather than by soil proper-
ties. Nutrient traits decreased in needles and fine roots 
and increased in branches with tree size. At the organ 
level, C, N, and P contents decreased and stoichiometric 
ratios increased markedly with organ age and root order. 
These findings confirms that plant growth depends on 
the functional coordination among organs. We also pro-
posed a nutrient acquisition strategy in younger trees for 
survival. Conversely, nutrient storage strategy in older 
trees is mainly for steadily growth. Our findings advance 
knowledge about plant nutrient variations in different plant 
organs at an induvial level, and highlight modification 
of the nutrient strategy. This will allow identification of 
underlying tree growth mechanisms and clarify internal 
nutrient strategies under rapid global change.
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